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techniques are commonly employed when solving simple single-material thermal problems, more 
complex cases with multiple layers can complicate the numerical implementation. A control volume 
analysis is used in the present work to derive a finite volume approach to the 1-D thermal analysis 
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highlight how this technique can simplify the overall solution process. Finally, two example problems 
are used to validate the accuracy of the approach, one of which involves analysis of a multilayer TPS 
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Nomenclature 
 
 
𝛼  = thermal diffusivity 
𝜀  = emissivity 
𝜌  = density 
𝜎  = Stefan-Boltzman constant 
𝜃  = time integration weighting factor 
𝜉  = spatial coordinate, computational plane 
𝑐𝑝  = heat capacity 
�̇�  = energy rate with respect to time 
�⃗�  = directional heat flux vector 
Fo = Fourier number 
k = thermal conductivity 
𝑛�⃗   = surface normal vector 
𝑞  = heat flux (per unit area) 
𝑞𝑔  = heat generation rate (per unit volume) 
S = surface area 
T = temperature 
t = time 
u = generic property in a control volume 
V = volume 
x = spatial coordinate, physical plane 
 
 
Subscripts/Superscripts 
 
cond = conduction 
conv = convection 
g = internal generation 
j = grid index 
L = left side 
n = time index 
R = right side 
rad = radiation 
x = derivative with respect to spatial coordinate x 
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1. Introduction 

 The solution of the transient one-dimensional heat diffusion equation is an elementary 
problem taught in many courses on heat transfer. While exact solutions are possible for a subset of 
problems, engineering applications typically involve using numerical techniques to obtain an 
approximate solution to the heat equation. For a simple analysis involving a single material with 
uniform grid spacing, finite difference methods are straightforward. For more complex engineering 
problems where the computational grid spacing is not uniform, and/or where different materials are 
being considered (i.e. composite slabs), it will be shown that the implementation of a finite volume 
technique using a generalized (i.e. curvilinear) coordinate transformation can help simplify the 
numerical approach. 

 Although several authors have published material discussing the numerical solution of the 
heat diffusion equation using finite volume techniques [1] or two-dimensional generalized 
coordinates [2], and industry standard thermal analysis tools such as FIAT [3] use a finite volume 
solution technique, the author is unaware of a reference describing the derivation and finite volume 
numerical implementation of the transient one-dimensional heat diffusion equation using generalized 
coordinates. The present work is therefore aimed at addressing this, as well as presenting an example 
of an engineering application of the technique for multi-material composite slabs. 

 

2. Finite Volume Formulation Using Generalized Coordinates 

 A finite volume approach is an intuitive technique that can be associated with the control 
volume analysis that can be used to derive the heat diffusion equation. In this approach, the quantities 
of interest in a given control volume are typically defined as a de facto averaged value. For example, 
consider a variable 𝑢(𝑥,𝑦, 𝑧) that varies as a function of location within a three-dimensional control 
volume. The “averaged” value of 𝑢 can be found by integrating the function over the entire volume: 

� 𝑢
𝑉

𝑑𝑉 = 𝑢 �𝑉 (1)  

where 𝑢� represents the averaged value of 𝑢. 

 To apply this approach to the heat diffusion equation, first consider an energy rate balance for 
a control volume, which can be written assuming conservation of energy as 

�̇�𝑠𝑡𝑜𝑟𝑒𝑑 = �̇�𝑐𝑜𝑛𝑑 + �̇�𝑐𝑜𝑛𝑣 + �̇�𝑟𝑎𝑑 + �̇�𝑔 (2)  

In equation (2), the rate of energy stored in the control volume (�̇�𝑠𝑡𝑜𝑟𝑒𝑑) is equal to the net energy 
rates into the control volume due to conduction (�̇�𝑐𝑜𝑛𝑑), convection (�̇�𝑐𝑜𝑛𝑣), radation (�̇�𝑟𝑎𝑑), and 
internal energy generation (�̇�𝑔). The rate of energy stored can be written as 

�̇�𝑠𝑡𝑜𝑟𝑒𝑑 =
𝜕
𝜕𝑡
� 𝜌𝑐𝑝
𝑉

𝑇𝑑𝑉 = � 𝜌𝑐𝑝
𝑉

𝜕𝑇
𝜕𝑡
𝑑𝑉 = ��̅�𝑐𝑝�

𝜕𝑇�
𝜕𝑡�

𝑉 (3)  
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where 𝑉 represents the size of the control volume. The term �̅�𝑐𝑝� (𝜕𝑇� 𝜕𝑡⁄ )  is the change with respect 
to time of thermal energy in the material per unit volume, with the overbars on the variables denoting 
“averaged” values for the control volume as defined previously. Note that in equation (3), it is 
assumed that the material density and specific heat do not change over the time interval being 
evaluated. 

 The net energy rates due to conduction, convection, and radiation can be represented by 
integrating the net heat flux entering the control volume due to the appropriate physical phenomena. 
For example, the net energy rate due to conduction can be written as 

�̇�𝑐𝑜𝑛𝑑 = � �⃗�𝑐𝑜𝑛𝑑
𝑆

∙ 𝑛�⃗  𝑑𝑆 (4)  

where �⃗�𝑐𝑜𝑛𝑑 represents the directional heat flux due to conduction, 𝑛�⃗  is the outward pointing surface 
normal, and 𝑆 represents the total surface area of the control volume. Similar equations can be written 
for the convective and radiative net energy rates. 

 Finally, the net change in energy due to internal heat generation can be written as the 
averaged value of the heat generation rate per unit volume multiplied by the control volume size: 

�̇�𝑔 = � 𝑞𝑔
𝑉

 𝑑𝑉 = 𝑞𝑔���𝑉 (5)  

 Using equations (3)-(5), the conservation law defined in equation (2) can be rewritten in 
integral form for the control volume as 

𝜕
𝜕𝑡
� 𝜌𝑐𝑝
𝑉

𝑇𝑑𝑉 = � �⃗�𝑐𝑜𝑛𝑑
𝑆

∙ 𝑛�⃗  𝑑𝑆 + � �⃗�𝑐𝑜𝑛𝑣
𝑆

∙ 𝑛�⃗  𝑑𝑆 + � �⃗�𝑟𝑎𝑑
𝑆

∙ 𝑛�⃗  𝑑𝑆 + � 𝑞𝑔
𝑉

 𝑑𝑉 (6)  

 In the case of a one-dimensional control volume, the volume reduces to a length ∆𝑥, and the 
surface area reduces to unity; therefore equation (6) can then be rewritten as 

��̅�𝑐𝑝�
𝜕𝑇��

𝜕𝑡�
∆𝑥 = �𝐹𝑐𝑜𝑛𝑑𝑖𝑛 − 𝐹𝑐𝑜𝑛𝑑𝑜𝑢𝑡� + �𝐹𝑐𝑜𝑛𝑣𝑖𝑛 − 𝐹𝑐𝑜𝑛𝑣𝑜𝑢𝑡� + �𝐹𝑟𝑎𝑑𝑖𝑛 − 𝐹𝑟𝑎𝑑𝑜𝑢𝑡�+ 𝑞𝑔���∆𝑥 (7)  

 

where the subscripts 𝑖𝑛 and 𝑜𝑢𝑡 refer to the conductive, convective, and radiative heat fluxes into and 
out of the control volume in the 𝑥-direction. 

 Using Fourier’s law for conductive heat transfer, equation (7) can then be rewritten as 

��̅�𝑐𝑝�
𝜕𝑇��

𝜕𝑡�
∆𝑥 = ���−𝑘

𝜕𝑇
𝜕𝑥
��
𝑖𝑛
− ��−𝑘

𝜕𝑇
𝜕𝑥
��
𝑜𝑢𝑡

�+ �𝐹𝑐𝑜𝑛𝑣𝑖𝑛 − 𝐹𝑐𝑜𝑛𝑣𝑜𝑢𝑡�+ �𝐹𝑟𝑎𝑑𝑖𝑛 − 𝐹𝑟𝑎𝑑𝑜𝑢𝑡�

+ 𝑞𝑔���∆𝑥 
(8)  

 where the derivative 𝜕𝑇 𝜕𝑥⁄  in equation (8) is evaluated at the control volume interfaces. 
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 Non-uniform spacing of the finite volume cells can complicate the implementation of 
numerical approaches to solving Equation (8). Therefore, a coordinate transformation can be applied 
using a generalized coordinate 𝜉(𝑥) that is a known function of 𝑥; typically the transformation is 
defined such that 𝜉(𝑥) has uniform spacing to simplify the numerical analysis. Applying the chain 
rule of differentiation, Equation (8) can be converted to generalized coordinates as 

��̅�𝑐𝑝�
𝜕𝑇�
𝜕𝑡�

∆𝑥 = ���−𝑘
𝑑𝜉
𝑑𝑥

𝜕𝑇
𝜕𝜉
��
𝑖𝑛
− ��−𝑘

𝑑𝜉
𝑑𝑥

𝜕𝑇
𝜕𝜉
��
𝑜𝑢𝑡

�+ �𝐹𝑐𝑜𝑛𝑣𝑖𝑛 − 𝐹𝑐𝑜𝑛𝑣𝑜𝑢𝑡�

+ �𝐹𝑟𝑎𝑑𝑖𝑛 − 𝐹𝑟𝑎𝑑𝑜𝑢𝑡� + 𝑞𝑔���∆𝑥 
(9)  

 

3. Numerical Implementation 

 The previous section discussed the derivation of the one-dimensional heat diffusion equation 
using a control volume approach. From a numerical standpoint, this can be thought of as equivalent to 
a cell-centered finite volume approach, where the center of each cell is assigned an integer index 
value 𝑗, and the cell interfaces have a fractional (e.g. 𝑗 ± 1/2) index. 

 In the solution of equation (9), the coordinate transformation is defined such that 𝜉(𝑥) has 
uniform spacing of ∆𝜉 = 1. The grid transformation metrics in equation (9) can be numerically 
approximated at the cell center as 

�𝜉𝑥𝑗 =
𝑑𝜉
𝑑𝑥�𝑗

=
𝜉𝑗+1/2 − 𝜉𝑗−1/2

𝑥𝑗+1/2 − 𝑥𝑗−1/2
=

1
𝑥𝑗+1/2 − 𝑥𝑗−1/2

=
1
∆𝑥𝑗

 (10)  

Likewise, the grid metrics at the cell interfaces can approximated numerically in a similar fashion: 

�𝜉𝑥𝑗−1/2 =
𝑑𝜉
𝑑𝑥�𝑗−1/2

=
𝜉𝑗 − 𝜉𝑗−1
𝑥𝑗 − 𝑥𝑗−1

=
1

𝑥𝑗 − 𝑥𝑗−1
 

�𝜉𝑥𝑗+1/2 =
𝑑𝜉
𝑑𝑥�𝑗+1/2

=
𝜉𝑗+1 − 𝜉𝑗
𝑥𝑗+1 − 𝑥𝑗

=
1

𝑥𝑗+1 − 𝑥𝑗
 

(11)  

 For the remainder of the discussion in this section, the convective and radiative heat fluxes 
are assumed to be zero, as these are typically incorporated into the boundary conditions for many 
engineering problems of interest. Additionally, the internal heat generation term is assumed to be zero 
(i.e. no heat sources exist in the material). Equation (9) can then be rewritten for a computational cell 
with index 𝑗 as  

���̅�𝑐𝑝�
𝜕𝑇�
𝜕𝑡�

�
𝑗
∆𝑥𝑗 = ���−𝑘𝜉𝑥

𝜕𝑇
𝜕𝜉
��
𝑗−1/2

− ��−𝑘𝜉𝑥
𝜕𝑇
𝜕𝜉
��
𝑗+1/2

� (12)  

 The time derivative can be approximated numerically using a first order backwards 
difference; the conductive heat fluxes at the cell interfaces can be constructed numerically based on 
the temperature in the cells on each side of the interface. This allows equation (12) to be written as 



 

5 

�𝜌𝑗𝑐𝑝𝑗
𝑇𝑗𝑛−𝑇𝑗𝑛−1

∆𝑡 �∆𝑥𝑗

= (1 − 𝜃)�𝑘
𝑗+12

𝜉𝑥𝑗+12

𝑇𝑗+1𝑛−1−𝑇𝑗𝑛−1

∆𝜉
—𝑘

𝑗−12
𝜉𝑥𝑗−12

𝑇𝑗𝑛−1−𝑇𝑗−1𝑛−1

∆𝜉 �

+ 𝜃 �𝑘
𝑗+12

𝜉𝑥𝑗+12

𝑇𝑗+1𝑛 −𝑇𝑗𝑛

∆𝜉
—𝑘

𝑗−12
𝜉𝑥𝑗−12

𝑇𝑗𝑛−𝑇𝑗−1𝑛

∆𝜉 � 

(13)  

where 𝑛 refers to the current time step in a numerical integration, and 𝑛 − 1 corresponds to the 
previous time step. The weighting factor 𝜃 is defined between 0 and 1, where 𝜃 = 0 represents an 
explicit time integration approach, and 𝜃 = 1 is fully implicit.  

 Note that the material density and heat capacity in equation (13) are defined at the cell center 
𝑗, whereas the thermal conductivity is defined at the cell interfaces 𝑗 ± 1/2.  One may be tempted to 
use an arithmetic mean to determine the thermal conductivity at the cell interfaces. Patankar [1], 
however, has shown that this can lead to incorrect results when analyzing composite slabs with abrupt 
changes in the thermal conductivity between materials, and that a better approach is to consider a 
control volume between the cell centers of the two cells adjoining the interface as a composite slab, 
and apply a steady-state one-dimensional heat conduction analysis. Assuming that the cell interfaces 
are midway between the cell centers, this analysis simplifies such that the interface thermal 
conductivity is the harmonic mean of the thermal conductivities in the two cells adjoining the 
interface, which can be written as  

𝑘𝑥𝑗±1/2 =
2𝑘𝑗𝑘𝑗±1

𝑘𝑗 + 𝑘𝑗±1
 (14)  

 Due to the fact that the coordinate transformation is defined such that ∆𝜉 = 1, and noting 
from equation (10) that ∆𝑥𝑗 = 1 𝜉𝑥𝑗�   for a given cell with index 𝑗, rearranging and simplifying terms 
allows equation (13) to be rewritten for an explicit integration scheme with 𝜃 = 0 as 

𝑇𝑗𝑛 = 𝑇𝑗𝑛−1 +
∆𝑡

𝜌𝑗𝑐𝑝𝑗
𝜉𝑥𝑗 �𝑘𝑗+1/2𝜉𝑥𝑗+1/2�𝑇𝑗+1

𝑛−1−𝑇𝑗𝑛−1� − 𝑘𝑗−1/2𝜉𝑥𝑗−1/2�𝑇𝑗
𝑛−1−𝑇𝑗−1𝑛−1�� (15)  

 The explicit integration scheme shown in equation (14) is a simple function of the 
temperature distribution at the previous time step, but the Fourier number must be less than or equal 
to 0.5 (for a one-dimensional analysis) to maintain numerical stability [4], where the Fourier number 
is defined as 

𝐹𝑜 =
𝛼(∆𝑡)
(∆𝑥)2 =

𝑘𝑗(∆𝑡)
𝜌𝑗𝑐𝑝𝑗

�𝜉𝑥𝑗�
2
 (16)  

 Depending on the specific problem being analyzed, the thermal diffusivity may be a function 
of temperature and location in a multi-material composite slab, and the spacing in the 𝑥-direction may 
not be uniform. Therefore, for an explicit analysis, the stability constraint should be evaluated on a 
per-cell, per-time step basis to determine the maximum time step possible in the integration of 
equation (15). 
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 For an implicit time integration technique with 𝜃 = 1, equation (13) can similarly be 
simplified to 

𝑇𝑗−1𝑛 �−𝑘𝑗−1/2𝜉𝑥𝑗−1/2 �
∆𝑡

𝜌𝑗𝑐𝑝𝑗
𝜉𝑥𝑗�� + 𝑇𝑗𝑛 �1 + �𝑘𝑗+1/2𝜉𝑥𝑗+1/2 + 𝑘𝑗−1/2𝜉𝑥𝑗−1/2��

∆𝑡
𝜌𝑗𝑐𝑝𝑗

𝜉𝑥𝑗��

+ 𝑇𝑗+1𝑛 �−𝑘𝑗+1/2𝜉𝑥𝑗+1/2 �
∆𝑡

𝜌𝑗𝑐𝑝𝑗
𝜉𝑥𝑗�� = 𝑇𝑗𝑛−1 

(17)  

Note that equation (17) is a linear system of equations that must be solved simultaneously to update 
the temperature for time step 𝑛, but has no numerical stability limitations on the time step size. 
Equation (17) results in a tridiagonal matrix of coefficients for the system of equations, which can be 
solved efficiently using standard inversion techniques such as the Thomas algorithm. 

 

4. Calculation of Cell Interface Temperatures and Boundary Conditions 

 While the finite volume approach discussed above makes intuitive use of control volume 
analysis to derive a numerical solution technique, one challenging aspect lies in the way the boundary 
conditions are implemented. As the material being analyzed is discretized into finite volume cells to 
solve equation (15) or (17), the cell-centered approach discussed means that the temperature is 
updated at the cell centers. The question then arises as to how to determine the temperature at the 
interfaces between cells, as the edges of the material (which are cell interfaces) are typically prime 
areas of interest in an engineering analysis. 

 Similar to the discussion of calculating the cell interface thermal conductivity, the use of 
steady-state one-dimensional heat conduction is useful. Consider the control volume shown in Figure 
1, where the boundaries of the control volume correspond to locations halfway between a finite 
volume cell interface and the centers of the two finite volume cells adjoining the interface. A steady-
state one-dimensional heat conduction equation can be written for this control volume similar to 
equation (12), except that the left hand side of the equation is set to zero due to the steady-state 
assumption, and the fluxes are constructed numerically taking into account that the control volume is 
half the size of a normal finite volume cell: 

��−𝑘𝜉𝑥
𝜕𝑇
𝜕𝜉
��
𝐿
− ��−𝑘𝜉𝑥

𝜕𝑇
𝜕𝜉
��
𝑅

= 0 (18)  
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Figure 1.  Depiction of a one-dimensional control volume used to determine the temperature at 

the cell interfaces. 

 

Again approximating the derivatives numerically, this reduces to 

𝑘𝑅𝜉𝑥𝑅
𝑇𝑗+1 − 𝑇𝑗+1/2

∆𝜉 2⁄
− 𝑘𝐿𝜉𝑥𝐿

𝑇𝑗+1/2 − 𝑇𝑗
∆𝜉 2⁄

= 0 (19)  

 As the 𝐿 and 𝑅 boundaries of the control volume lie within finite volume cells, the thermal 
conductivity at the control volume boundaries is assumed to be the “averaged” value in each cell as 
defined in equation (1). Therefore, equation (19) can be rewritten (dividing out the constant ∆𝜉 2⁄  and 
approximating the grid metrics at the 𝐿 and 𝑅 boundaries numerically) as 

𝑘𝑗+1𝜉𝑥𝑗+1�𝑇𝑗+1 − 𝑇𝑗+1/2� − 𝑘𝑗𝜉𝑥𝑗�𝑇𝑗+1/2 − 𝑇𝑗� = 0 (20)  

 Finally, rearranging terms then allows the cell interface temperature to be calculated as 

𝑇𝑗+1/2 =
𝑘𝑗+1𝜉𝑥𝑗+1𝑇𝑗+1 + 𝑘𝑗𝜉𝑥𝑗𝑇𝑗

𝑘𝑗+1𝜉𝑥𝑗+1 + 𝑘𝑗𝜉𝑥𝑗
 (21)  

 For TPS-related engineering applications, the problem is typically such that a multilayer TPS 
material with boundaries on each end is subject to convective heat fluxes (e.g. due to a high 
temperature flow over the material) and radiative heat fluxes (e.g. when the surface temperature is 
significant). To apply these types of boundary conditions to the solution of equation (15) or (17), a 
straightforward technique is to use “ghost” cells that extend past the boundary, as shown in Figure 2. 
For this example, a steady-state heat flux balance can be written at the boundary wall (index 𝑗 =
1/2) as 

𝑞𝑐𝑜𝑛𝑑 = 𝑞𝑐𝑜𝑛𝑣 + 𝑞𝑟𝑎𝑑 (22)  
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Figure 2.  Example of a one-dimensional ghost cell used to apply a wall boundary condition 

 

Using Fourier’s law and the Stefan-Boltzmann law, this can be rewritten as 

�−𝑘𝜉𝑥
𝜕𝑇
𝜕𝜉
� = 𝑞𝑐𝑜𝑛𝑣 − 𝜎𝜀𝑇4 (23)  

where the variables in equation (23) are evaluated at the boundary wall. Note that while the 
convective heat flux is typically written in terms of the heat transfer coefficient and difference 
between the recovery and wall temperatures, for the purposes of the present work it is treated as a 
“general” heat flux input into the surface that is not dependent on wall temperature. Likewise, for 
simplicity the temperature of the surroundings used to determine the radiative heat flux is also 
assumed to be zero in equation (23). Note that while the steady-state heat flux balance used above 
only considers boundary condition heat fluxes due to conduction, convection, and radiation, other 
thermodynamic phenomena (e.g. ablation heating or cooling) could be incorporated into equation (22) 
as appropriate. 

 Using the indices listed in Figure 2, equation (23) can be rewritten (approximating the spatial 
derivative numerically and using subscripts to denote the grid indices) as 

−𝑘1/2𝜉𝑥1/2(𝑇1 − 𝑇0) = 𝑞𝑐𝑜𝑛𝑣1/2 − 𝜎𝜀1/2�𝑇1/2�
4 (24)  

Rearranging terms allows the temperature in the ghost cell to be calculated as 

𝑇0 = 𝑇1 +
𝑞𝑐𝑜𝑛𝑣1/2 − 𝜎𝜀1/2�𝑇1/2�

4

𝑘1/2𝜉𝑥1/2
 (25)  

 The ghost cell at 𝑗 = 0 is essentially an “imaginary” mirror image cell used to allow the use 
of equations (15) or (17) with no special treatment at the boundaries (aside from normal handling of 
boundary condition values). Therefore it is assumed to be the same size and have the same material 
properties as the cell at 𝑗 = 1, i.e. the thermal conductivity, emissivity, and grid metrics at the wall 
are identical to the averaged properties for the cell at 𝑗 = 1 (e.g. 𝑘𝑗=1/2 = 𝑘𝑗=0 = 𝑘𝑗=1). Equation 
(21) can then be used to calculate the temperature at the wall as 

0=j 1=j

21=j
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𝑇1/2 =
𝑘1𝜉𝑥1𝑇1 + 𝑘1𝜉𝑥1𝑇0
𝑘1𝜉𝑥1 + 𝑘1𝜉𝑥1

=
𝑇1 + 𝑇0

2
 (26)  

 In equation (25) the temperature at 𝑇0 is a function of the temperature at 𝑇1/2 due to the 
radiative heat flux, yet in equation (26) the temperature at 𝑇1/2 is a function of 𝑇0. Therefore, in the 
numerical application of the boundary condition where the radiative heat flux at the wall is non-zero, 
equations (25) and (26) need to be solved using an iterative technique. While in some cases equations 
(25) and (26) can be successively iterated until the values of 𝑇0 and 𝑇1/2 reach a constant value within 
a specified tolerance, convergence may be slow or difficult to achieve in situations with large 
temperature gradients and high surface temperatures. The use of a robust root finding technique (such 
as Brent’s algorithm [5]) can eliminate this issue.  

 The same technique discussed above can be used to derive the boundary condition at the 
𝑗 = 𝑗𝑚𝑎𝑥 + 1/2  boundary wall of the grid using a ghost cell at 𝑗 = 𝑗𝑚𝑎𝑥 + 1. This results in  

𝑇𝑗𝑚𝑎𝑥+1 = 𝑇𝑗𝑚𝑎𝑥 +
𝑞𝑐𝑜𝑛𝑣𝑗𝑚𝑎𝑥+1/2 − 𝜎𝜀𝑗𝑚𝑎𝑥�𝑇𝑗𝑚𝑎𝑥+1/2�

4

𝑘𝑗𝑚𝑎𝑥+1/2𝜉𝑥𝑗𝑚𝑎𝑥+1/2
 (27)  

and 

𝑇𝑗𝑚𝑎𝑥+1/2 =
𝑇𝑗𝑚𝑎𝑥+1 + 𝑇𝑗𝑚𝑎𝑥

2
 (28)  

 which again must be solved using an iterative technique for boundaries with non-zero radiative heat 
flux until 𝑇𝑗𝑚𝑎𝑥 and 𝑇𝑗𝑚𝑎𝑥+1/2 reach a constant value. 

 Note that for an implicit time integration technique, equations (25) and (27) supplement the 
linear system described in equation (17) to provide equations for the temperature at the boundaries. 

 

5. Validation and Example Cases 

 To assess the validity of the solution technique described above, a thermal analysis tool was 
created in Excel using Visual Basic for Applications. A simple validation case was run considering a 
problem in which a semi-infinite slab of copper (𝑘 = 401 W/m*K, 𝛼 =1.17x10-4 m2/s) at an initial 
uniform temperature of 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =20 ℃ is exposed to a constant net heat flux input of 𝑞𝑛𝑒𝑡 = 3x105 
W/m2 on one side. This problem is identical to Example 5.8 described in Ref. [4], which notes that 
the analytical solution for 𝑇(𝑥, 𝑡) at a given time 𝑡 and location 𝑥 from the wall can be written as 

𝑇(𝑥, 𝑡) = 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +
2𝑞𝑛𝑒𝑡�𝛼𝑡 𝜋⁄

𝑘
exp �−

𝑥2

4𝛼𝑡�
−
𝑞𝑛𝑒𝑡𝑥
𝑘

𝑒𝑟𝑓𝑐 �
𝑥

2√𝛼𝑡
� (29)  

 The finite volume method discussed in the present work was used to solve the one-
dimensional unsteady heat diffusion equation in the copper slab, where 𝑞𝑛𝑒𝑡 is assumed to be 
equivalent to 𝑞𝑐𝑜𝑛𝑣 + 𝑞𝑟𝑎𝑑 in equation (22). For the purposes of this analysis, the results from the 
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explicit algorithm shown in equation (15) were compared to the analytical solution defined above, as 
well as to the explicit finite-difference algorithm results listed in Ref. [4]. This comparison was 
performed for the case where 𝐹𝑜=0.25 and ∆𝑥=75 mm, which results in ∆𝑡=12 s. The results obtained 
by solving equation (15) for the first 9 cell interfaces of the finite volume cells nearest the wall are 
identical to that listed in Ref. [4] for the finite difference solution on 9 nodes (located at the same 𝑥 
locations as the finite volume cell interfaces). Finally, Figure 3 plots the temperature distribution in 
the material at 𝑡=120 s as a function of distance from the wall. As can be observed, the finite volume 
solution is equal to the finite difference solution, and both are reasonable approximations to the 
analytical results obtained by equation (29). 

 
Figure 3.  Temperature distribution in copper slab example at time t=120 s. 

 

 While the validation case above demonstrates that the finite volume formulation can produce 
results equivalent to those generated using a node-centered finite difference approach, the primary 
benefit of the technique described in the present work is in the application to more complex 
engineering problems involving multi-material composite slabs and non-uniform grid spacing. 
Consider the example of a gliding reentry vehicle with a thermal protection system (TPS) 
configuration consisting of the materials shown in Table 1. A thermal analysis can be conducted to 
assess the temperatures in the material as the reentry vehicle is subjected to the heat flux indicated in 
Figure 4. For this purpose, the implicit version of the finite volume technique described in the present 
work was used; the same example was also run with the industry standard thermal analysis program 
FIAT [3] to confirm the results. Both analyses used the same material properties, outer boundary heat 
flux input show in Figure 4, and an adiabatic inner boundary condition. At the outer boundary, the 
radiative heat flux was also included (which required an iterative solution of (25) and (26) as 
discussed in Section 4).  
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Table 1.  Materials in TPS Composite Slab Example 

Layer Material Thickness, cm 
Outer Layer Carbon-Carbon 1.27 
Interior Layer Carbon Felt 0.95 
Interior Layer Min-K Insulation 4.57 
Inner Layer Titanium 1.27 

 
 
 
 

 
Figure 4. Heat flux input to outer boundary for TPS composite slab example. 

 

 The outer and inner boundary temperature time history for this TPS composite slab example 
is compared in Figure 5; it can be seen that the results from FIAT are essentially identical to those of 
the present work. (For the FIAT analysis, the default option of having FIAT generate the 
computational grid was used; this resulted in 64 grid points for FIAT vs. the 23 cells used in the finite 
volume results shown in Figure 5.)  The temperature profile through the composite slab is also shown 
at several different times in Figure 6; the points on each “Finite Volume” line correspond to the cell 
interfaces used in the calculation (23 cells in total), and demonstrate how the technique can produce 
accurate results while allowing the use of non-constant cell spacing with relative ease. (Note that for 
simplicity the results for this TPS composite slab example assume a non-ablating/non-catalytic 
surface, which may not be realistic for the materials and temperatures in this example. Hence these 
results should be taken as a first-order thermal assessment, with additional modeling required to 
assess the effects due to thermochemical processes.) 
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Figure 5. Thermal analysis results for TPS composite slab example. 

 
 

 
Figure 6. Temperature distribution within TPS composite slab example at different times. 
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6. Conclusions 

 The present work has outlined a finite volume approach to solving the transient one-
dimensional heat diffusion equation using generalized coordinates. As demonstrated above, it can be 
seen how this technique can simplify the numerical solution of multi-material TPS-related 
engineering problems using non-uniform grid spacing. This can be useful in allowing the number of 
grid cells and cell spacing in each layer of a multi-material TPS analysis to be tailored to the accuracy 
required, with no need to maintain constant spacing throughout the material. 

 While beyond the scope of the present work, it should be noted that one of the advantages of 
deriving the finite volume solution approach from a control volume analysis is that the extension to 
two- and three-dimensional problems, as well as problems with non-hexahedral cells, is relatively 
intuitive. As equation (6) implies, the problem reduces to considering the rate of energy stored in the 
cell and the heat transfer across each of the cell interfaces. The present work considered heat fluxes 
due to conduction, convection, and radiation, but other heat fluxes (e.g., due to ablation, surface 
catalycity) could be added in a similar fashion. While additional dimensions introduce added 
complexity in the grid metrics, such as the multi-dimensional application of the chain rule of 
differentiation and the need to model fluxes in the three local coordinate directions for each cell face 
for a three-dimensional cell, standard techniques used to solve multi-dimensional fluid mechanics 
problems on generalized coordinates are applicable [6]. 
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